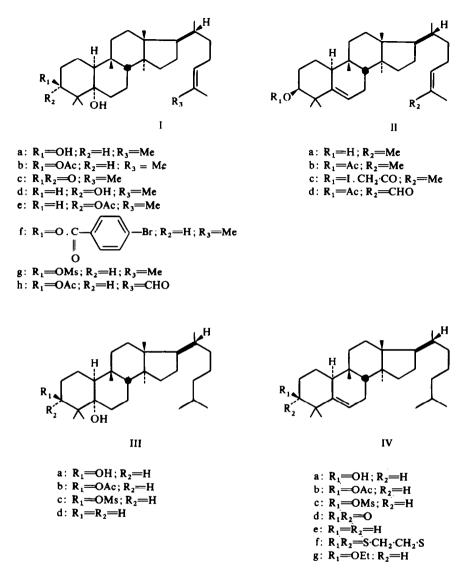
STRUCTURE OF LITSOMENTOL, A NEW TETRACYCLIC TRITERPENE*

T. R. GOVINDACHARI, N. VISWANATHAN and P. A. MOHAMED CIBA Research Centre, Goregaon East, Bombay 63, India

(Received in the UK 24 April 1971; Accepted for publication 20 June 1971

Abstract – Litsomentol, a new tetracyclic triterpene, isolated from Litsea tomentosa. Heyne, has been shown to have structure Ia by degradation and correlation with agnosterol.

FROM THE BARK of *Litsea tomentosa* Heyne (Family: Lauraceae), besides the known compounds. caryophyllene oxide.¹ β -sitosterol and actinodaphnine. we have isolated a new triterpene alcohol. named litsomentol.² By degradation and direct correlation with agnosterol. litsomentol has been shown to have the cucurbitane-based structure (Ia). We present here details of this work.

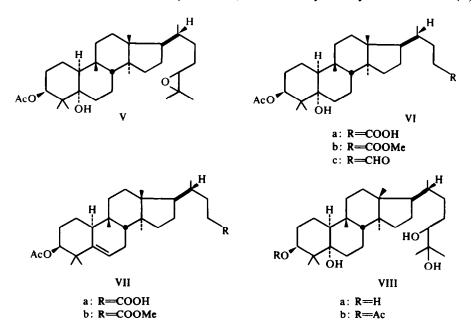

Litsomentol. m.p. 218-219°. v_{max} 3260 cm⁻¹ (OH). analyses for formula $C_{30}H_{52}O_2$. Its mass spectrum fails to show the molecular ion peak. the highest peak being at m/e 426. arising from facile dehydration of the compound. The presence of a secondary OH was shown by acetylation to give a monoacetate (Ib) and by oxidation to a ketone. litsomentone (Ic). The latter has v_{max} 1700 cm⁻¹ (six or higher-membered ring ketone) and gives a positive Zimmermann test indicative of a --CO.CH₂---group. Dehydration of acetyllitsomentol with potassium bisulphate gave the anhydro-acetate (Ib) which was hydrolysed with alkali to anhydrolitsomentol (IIa).

The NMR spectrum (CDCl₃. 100 MHz) of acetyllitsomentol (Ib) shows the presence of one vinylic proton as a triplet at $\delta 5.1 (J = 6 \text{ cps})$. one CH–OAc proton as a narrow triplet at $\delta 4.80 (J = 1.5 \text{ cps})$. one OH at $\delta 3.10$. one acetate Me as a singlet at $\delta 2.1$. two vinylic C–Me groups at $\delta 1.69$ and 1.61. five tertiary C–Me groups as singlets at $\delta 1.20.1.04.1.02.0.94$ and 0.83 and one secondary C–Me as a doublet at $\delta 0.88 (J = 7 \text{ cps})$.

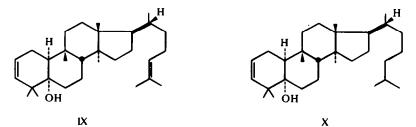
The NMR spectrum (CDCl₃. 100 MHz) of anhydroacetyllitsomentol (IIb) shows the presence of two vinylic protons, at δ 5.47 (dd, J = 6, 1 cps) and 5.05 (t, J = 7 cps), the former arising from the newly formed trisubstituted double bond.

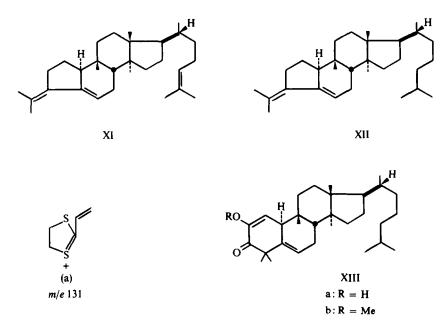
Reduction of litsomentone (Ic) with NaBH₄ or LAH gave a mixture of litsomentol (Ia) and 3-epi-litsomentol (Id). the latter being characterised as the acetate (Ie). Reduction using Na and n-propanol gave a larger proportion of Id. The multiplicity of the CH-OAc proton in acetylllitsomentol (Ib) (t. J = 1.5 cps) showed the hydrogen to be equatorial. In the epimer (Ie). this proton being axial. appears as a broad signal at δ 5-1 coinciding with the vinyl hydrogen. In keeping with this assignment 3-epi-litsomentol (eq. OH) is more easily acetylated than litsomentol (ax. OH).

^{*} Contribution No. 248 from CIBA Research Centre. Part of this work was presented at the First Indo-Soviet Symposium on the Chemistry of Natural Products, Tashkent, September (1968).


The presence of a double bond in litsomentol is indicated by the yellow colour it gives with tetranitromethane and by the NMR spectrum of its acetate which shows the presence of an isopropylidene group. This was proved by catalytic reduction to give dihydrolitsomentol (IIIa). The acetate (IIIb) of the latter was dehydrated smoothly with potassium bisulphate to give the anhydrodihydroacetate (IVb) which on aikaline hydrolysis gave anhydrodihydrolitsomentol (IVa).

Epoxidation of acetyllitsomentol (Ib) yielded epoxide V. The presence of an Me


 $\mathbf{R-CH}_2-\mathbf{CH}=\mathbf{C}$ group in litsomentol was shown by ozonolysis of acetyllitso-Me mentol which gave acetone and acetyltrisnorlitsomentic acid (VIa). The latter yielded a methyl ester (VIb) which could be dehydrated to the anhydroester (VIIb). Dehydration of acid VIa gave the anhydroacid (VIIa).


Hydroxylation of litsomentol and acetyllitsomentol with OsO_4 yielded the tetraol (VIIIa) and the triol (VIIIb) respectively. The latter was cleaved by $NaIO_4$ to give the aldehyde (VIc) whose NMR spectrum shows the aldehyde proton as a triplet at δ 9.8. SeO₂ oxidation of acetyllitsomentol yielded two α . β -unsaturated aldehydes, separated by chromatography, the more polar compound (Ih) arising by oxidation of a vinylic Me to an aldehyde group and the less polar compound (IId) arising by oxidation of the Me and concomitant dehydration of the tertiary OH group.

Treatment of litsomentol with $MeSO_2Cl$ and pyridine gave isoanhydrolitsomentol (IX). Treatment of dihydrolitsomentol with the same reagents under milder conditions yielded a mixture of the mesylate (IIIc) and isoanhydrolitydrolitsomentol (X).

The NMR spectra of both IX and X show that the newly formed double bond is disubstituted, the vinylic protons of X appearing at δ 5.65 apd 5.25. Catalytic reduction of both IX and X yielded 3-desoxydihydrolitsomentol (IIId) which on dehydration with potassium bisulphate gave the hydrocarbon (IVe).

The above data show that litsomentol is a tetracyclic triterpene having five tertiary C-Me, one secondary C-Me, one secondary axial OH, one tertiary OH and a side

chain ending with the group $R-CH_2-CH=C$. The secondary OH could be

assigned to C_3 since all known tetracyclic triterpenes have an oxygen function at C_3^3 .

The tertiary OH was indicated to be at C₅ since treatment of litsomentol with PCl₅ or formic acid gave a heteroannular conjugated diene hydrocarbon (XI). λ_{max} 243 mµ (log ε 3.70). Anhydrodihydrolitsomentol (IVa) with PCl₅ similarly gave the diene (XII) which was also obtained by solvolysis of the mesylate (IVc). The formation of the diene supports the placement of the OH's in litsomentol at C₃ and C₅, the double bond in the dehydration products being at C₅-C₆.^{4, 5} This is further corroborated by the mass spectrum of the thioketal (IVf) of anhydrodihydrolitsomentone (IVd) which shows its base peak at m/e 131 due to the fragment (a) arising by fission of both the C₁-C₁₀ and C₃-C₄ bonds which possess allylic activation.⁶

The presence of a hydrogen at C_{10} in litsomentol was shown by the Barton oxidation of anhydrodihydrolitsomentone (IVd) with t-BuOK and oxygen. The resultant diosphenol (XIIIa) had $\lambda_{max} 273$ mµ. shifted to 315 mµ on adding alkali. The NMR spectrum of the diosphenol showed the C_1 -H as a doublet at $\delta 6.12$ (J = 2.5 cps), C_6 -H at $\delta 5.65$ (multiplet) and C_{10} -H as a triplet (J = 2.5 cps) at $\delta 3.41$. by vicinal coupling with C_1 -H and allylic coupling with C_6 -H. Methylation of the diosphenol yielded the methyl ether (XIIIb) whose NMR spectrum showed the C_1 -H at $\delta 5.78$ (d. J = 2.5 cps). C_6 -H at $\delta 5.68$ (m) and C_{10} -H at $\delta 3.41$ (broad singlet), Irradication of the signal at $\delta 3.41$ converted the signal at $\delta 5.78$ into a sharp singlet and the signal at $\delta 5.68$ into a neat quartet. This was strikingly similar to the reported NMR spectra of the diosphenols derived from cucurbitacins.⁷ The presence of a hydrogen at C_{10} and of a OH at C_5 indicated that litsomentol possessed the cucurbitane skeleton. This was supported by the ORD (Fig. 1) and CD

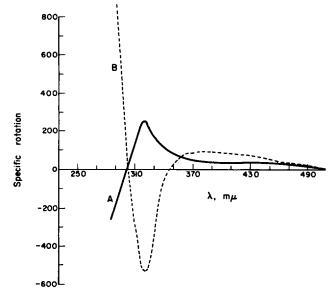


FIG 1. ORD curves: A, Litsomentone (Ic); B, Anhydrodihydrolitsomentone (Ivd)

(Fig. 2) of litsomentone (Ic) and anhydrodihydrolitsomentone (IVd). The CD of Ic is positive whereas that of IVd is negative. The sign and amplitude of the latter are those expected for a 3-ketocucurbitane having a C_5-C_6 double bond.^{5,8}

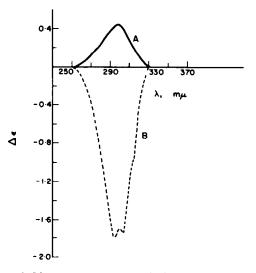
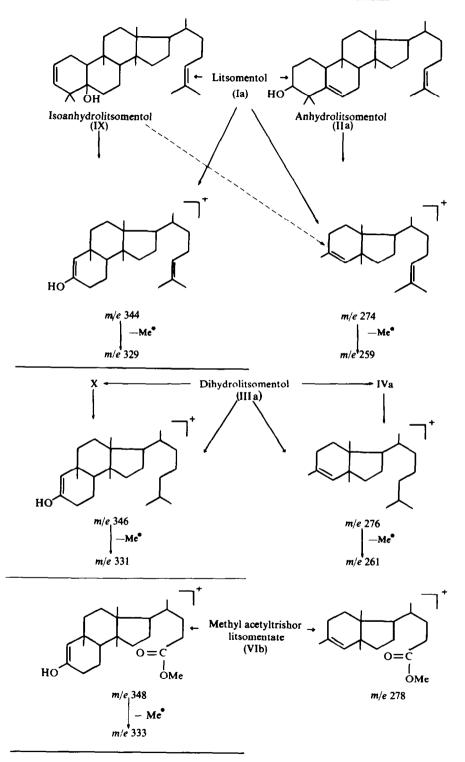
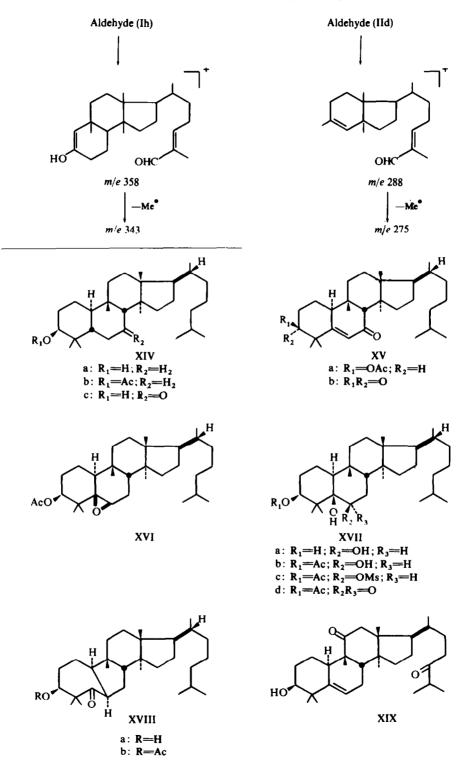




FIG 2. CD curves: A, Litsomentone (Ic); B, Anhydrodihydrolitsomentone (IVd)

The major mass spectral fragmentations of litsomentol and its derivatives can be rationalised as follows on the basis of structure (Ia).

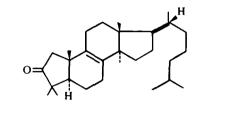
The double bond at C_5-C_6 in anhydrodihydroacetyllitsomentol (IVb) is inert as in the cucurbitacins. Catalytic reduction required very drastic conditions and yielded compound (XIVb) in poor yield. Attempted hydroboration of IVb left the double bond untouched and reduced the Ac group to give the ethyl ether (IV g). Such reductions of ester groups to ethers have previously been reported with diborane.⁹ Ozone did not attack the double bond in IVb but oxidised the allylic methylene at C_7 to give the α . β -unsaturated ketone (XVa). This compound was more conveniently obtained by oxidation of IVb with chromic acid. The NMR spectrum of XVa showed the C_6 -H at δ 6·1 as a doublet (J = 1.5 cps) due to allylic coupling with the C_{10} -H. C_{10} -H as a broad signal at δ 2·7. C_8 -H as a singlet at δ 2·41 and the CH-OAc as a triplet (J = 1.5 cps) at δ 4·85. This is very reminiscent of the Δ^5 -7-ketones obtained from cucurbitacins.¹⁰ LAH reduction of XVa yielded the saturated ketone (XIVc). Oxidation of anhydrodihydrolitsomentol (IVa) with excess chromic acid also resulted in oxidation of the C_7 -methylene to yield the diketone (XV b).

Epoxidation of IVb gave the epoxide (XVI). This is assigned the β -epoxide structure since approach of the peracid from the α -side would be severely hindered by the C_{14} -Me in the most likely conformation of IVb—with ring C as chair to avoid the interaction between the C_{9} -Me and C_{13} -Me groups.

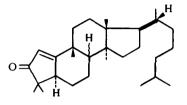
Hydroxylation of IVb with OsO_4 yielded the diol (XVIIb) which on hydrolysis yielded the triol (XVIIa). Oxidation of XVIIb with Jones reagent yielded the ketol acetate (XVIId). which had $v_{max}1730$ (OAc) and 1710 cm^{-1} (six-membered ring ketone). showing that the double bond in IVb was part of a six-membered ring.

Treatment of the diol (XVIIb) with $MeSO_2Cl$ and pyridine yielded the mesylate (XVIIc) and a ketone assigned formula (XVIIIb). The latter was also obtained by treatment of XVIIc with collidine. Hydrolysis of XVIIIb yielded the keto-alcohol (XVIIIa). Structure XVIIIb is assigned to the keto-acetate on the basis of its spectral properties and by analogy.¹¹

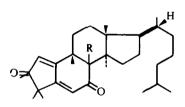
The foregoing evidence lend convincing support for structure (Ia) for litsomentol. In an initial unsuccessful attempt to correlate it with lanost-8.9-ene. the hydrocarbon, 3-desoxyanhydrodihydrolitsomentol (IVe) was subjected to the normal acid-catalysed backbone rearrangement conditions using trifluoroacetic acid, conc. HCl, H_2SO_4 and HCl in phenol. The products obtained were uncharacterisable gums. VPC examination showed them to consist of a mixture of several compounds including starting material.

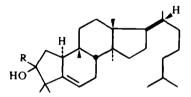

Biglino et al.⁵ had assigned structure XIX to bryogenin isolated from Bryonia dioica (Cucurbitaceae). An attempt to relate it to litsomentol failed since the C_{11} -carbonyl of bryogenin could not be reduced even under drastic Wolff-Kishner conditions.

In an independent effort to correlate bryogenin with lanosterol. Ourisson and Ponsinet¹² carried out an acid-catalysed rearrangement of A-norlanostenone (XX) and obtained an α . β -unsaturated ketone assigned structure XXI. This was oxidised to a mixture of amorphous dienediones, the major product which was still non-crystalline being assigned structure XXIIa. The authors however pointed out that the evidence for this structure is not adequate.

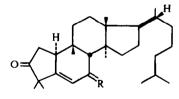

With a view to confirm the nature of rings A and B of litsomentol and correlate it with the compound obtained by Ourisson and Ponsinet, the following sequence of reactions was carried out. The diosphenol (XIIIa) mentioned earlier was converted

4998

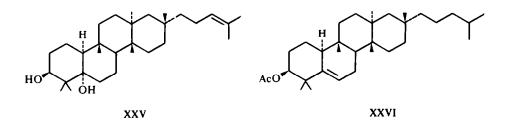

to the benzilic acid (XXIIIa). The derived ester (XXIIIb) was reduced with LAH to the diol (XXIIIc) which was cleaved by NaIO₄ to give the A-norketone (XXIVa). Oxidation of this with chromic acid yielded the α . β -unsaturated ketone (XXIVb) which was further oxidised with SeO₂ to yield the diene-dione (XXIIb). This diene-doine was not identical with the compound obtained by Ourisson and Ponsinet.

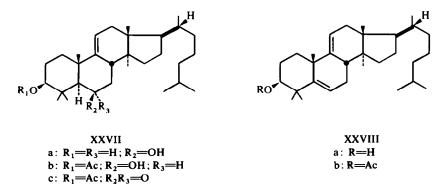


XX

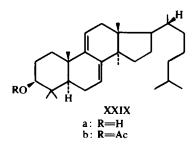

XXI

XXII a: R==α—H b: R==β—H

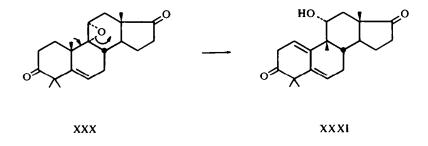

XXIII a: R=COOH b: R=COOMe c: R=CH,OH


XXIV a: R=H₂ b: R=O

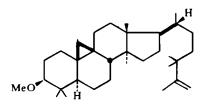
Treatment of XXIIb with alkali failed to effect epimerisation at C_8 . Since the structure of litsomentol has been independently confirmed, the diene-dione from it does have structure XXIIb and it is possible that the product from A-norlanostenone. arising by a drastic acid-catalysed reaction, is the result of a more deep-seated rearrangement.


The degradation of litsomentol to the diene-dione (XXIIb) establishes the nature of rings A and B. A possible structure (XXV) for litsomentol. based on the shionane skeleton.^{13, 14} was discounted because of the absence of the diagnostic M-83 peaks in the mass spectrum of litsomentol and its derivatives (M-85 in the dihydro compounds) and by the non-identity of anhydrodihydroacetyllitsomentol (IVb) with the acetate (XXVI) prepared from shionone.¹³ Such a shionane-based structure is also discounted by the unmistakable presence of a secondary C-Me in the NMR spectrum of acetyllitsomentol.

A successful correlation of litsomentol with lanosterol was finally achieved as follows: The epoxide (XVI) of anhydrodihydroacetyllitsomentol. on treatment with BF₃.Et₂O yielded a secondary alcohol (XXVIIb), possessing a trisubstituted double bond. Hydrolysis of XXVIIb yielded the diol (XXVIIa), the vinyl hydrogen of which appeared in the NMR spectrum as a quartet at δ 5·32. Oxidation of XXVIIb with chromic acid yielded the ketoacetate (XXVIIc), v_{max} 1735 (OAc). 1710 cm⁻¹ (ketone). Treatment of XXVIIb with MeSO₂Cl and pyridine yielded the non-conjugated diene (XXVIIb) whose vinylic hydrogens appeared in the NMR spectrum at δ 5·73 (t) and 5·38 (dd). Hydrolysis of XXVIIIb with alkali gave XXVIIIa without isomerising the double bonds. Treatment of XXVIIIb with N-lithioethylenediamine,¹⁵ however, effected isomerisation as well as hydrolysis to yield a conjugated diene alcohol. m.p. 157°. whose physical and spectral properties agreed with the reported values for dihydroagnosterol (XXIXa).^{3, 16} a known constituent of sheep's wool fat. Acetylation of XXIXa gave the acetate (XXIXb). m.p. 167–168°. identical with an authentic sample of dihydroagnosterol acetate.



5000


This correlation confirms the gross structure of litsomentol as well as the stereochemistry at all the centres except that of the tertiary OH at C₅. Since the C₃-OH has been shown to be β (axial) and since litsomentol fails to form cyclic derivatives with reagents like phosgene. thiophosgene and benzaldehyde, the C₅-OH must be α (equatorial). This is also in keeping with the fact that dehydration of the tertiary OH proceeds to give a C₅-C₆ double bond and not a C₅-C₁₀ double bond. indicating that the C₅-OH and C₁₀-H are *cis* to each other.

The conversion of litsomentol to dihydroagnosterol represents a simple correlation of the cucurbitanes and the lanostanes. The skeletal rearrangement observed in the opening of the epoxide (XVI) is a reversal of the recently reported rearrangement of XXX to XXXI.¹⁷ The only other correlation between the cucurbitane and lanostane series has been reported by Barton *et al.*¹⁸ who converted eburicoic acid and cucurbitacin A to a common intermediate by two extended series of reactions.

The cucurbitacins have been encountered mainly in plants belonging to the Cucurbitaceae family. Exceptions to this are the isolation of some cucurbitacins from plants of the Cruciferae.¹⁹ Scrophulariaceae^{20, 21} and Begoniaceae.²² Litsomentol is the only member of the cucurbitacin group to be isolated from a plant belonging to the Lauraceae family. It represents the simplest member of the group and is unique in lacking an oxygen function at C_{11} .

It is interesting to note that the plant *Neolitsea dealbata* R.Br. Merr. (Lauraceae) which is closely related to *Litsea tomentosa* Heyne contains cycloneolitsin (XXXII)^{23,24} which has a cycloartenol skeleton. The isolation of litsomentol and cycloneolitsin from two closely related species supports the intermediacy of cycloartenol in the biosynthesis²⁵ of the cucurbitacins.

X X XII

EXPERIMENTAL

M.ps are uncorrected. UV spectra were measured in EtOH on a Beckman DK 2A spectrophotometer and IR spectra on a Perkin-Elmer Model 421. Optical rotations were determined in 2-3% soln in CHCl₃ at 25° NMR spectra. unless otherwise stated, were recorded on a Varian A-60 instrument in CDCl₃. Figures given in parenthesis in the mass spectral fragmentations refer to the relative intensities of the ions concerned.

Isolation. The air-dried powdered bark (10 kg) of Litsea tomentosa Heyne, collected in Mysore State. was extracted repeatedly with hot hexane, the combined extracts concentrated and left on ice for a week. The solid that separated was filtered, washed with hexane and crystallised from CHCl₃-MeOH to yield litsomentol (Ia) (6 g). m.p. 218-219°, $[\alpha]_D \pm 0^\circ$, ν_{max} (Nujol) 3260 cm⁻¹ (Found: C. 80-61; H. 11-71; active H. 0.36. C₃₀H₅₂O₂ requires: C. 81-02; H. 11-79; active H. 0.45%). Mass spectrum: *m/e* 426 (M-H₂O) (41), 411 (20), 408 (6), 344 (65), 329 (100), 274 (45), 259 (28), 231 (33), 205 (16), 163 (32), 149 (55), 135 (22), 123 (32), 121 (35), 119 (38), 109 (46), 107 (41), 105 (63), 95 (44), 69 (57). Litsomentol gives a yellow colour with tetranitromethane. NMR (CF₃CO₂H): $\delta 5.37$ (1H. br), 3.55 (1H. br), 1.62 (6H. s).

The oil. after removal of litsomentol, was chromatographed over silica gel in hexane and eluted successively with hexane. C_6H_6 -hexane. C_6H_6 and CHCl₃. The fractions eluted by hexane and C_6H_6 -hexane were combined and rechromatographed to give caryophyllene oxide.¹ m.p. 62-63° (from MeOH). $[\alpha]_{\tilde{o}}$ 69·3°. ν_{max} (CH₂Cl₂) 1610 cm⁻¹, identical (m.m.p., TLC, IR, NMR) with an authentic sample. (Found : C. 81·72; H. 10·77. Calc. for $C_{15}H_{24}O$: C. 81·76; H. 10·98%). Mass spectrum : m/e 220 (M⁺). NMR: δ 4·91 (1H. d. J = 1.5 cps). 4·8 (1H. d. J = 1.5 cps). 1·12 (3H. s). 1·0 (3H. s). 0·97 (3H. s). The fractions eluted by CHCl₃ yielded β-sutosterol. identical with an authentic sample.

The defatted bark was extracted with MeOH. the extract concentrated and treated with 0.5N HCl. The acid soln was filtered. basified with NH₄OH and extracted with CH₂Cl₂ to yield the crude alkaloid (7 g). Chromatography over silica in CHCl₃ yielded actinodaphnine (2.5 g). m.p. 210° (from MeOH-ether). $[\alpha]_{\rm D}$ + 40.5°. M⁺ at *m/e* 311, identical (m.m.p., TLC, UV, IR, NMR) with an authentic sample.

Acetyllitsomentol (1b). L1somentol (2 g) was refluxed with Ac₂O (15 ml) and Py (10 ml) for 5 hr. cooled and poured on ice. The solid that separated was filtered and crystallised from CHCl₃-MeOH to yield 1b (1.8 g). m.p. 166–168 . $[\alpha]_D + 26.7^\circ$. v_{max} (Nujol) 3560. 1740 cm⁻¹ (Found: C. 79.10; H. 10.94. C₃₂H₅₄O₃ requires: C. 78.96; H. 11.18%). Mass spectrum : m/e 486 (M⁺) (1). 468 (2). 453 (1). 426 (15). 344 (48). 329 (100). 274 (5). 259 (8). 231 (22). Hydrolysis of acetyllitsomentol with 7% KOH in MeOH gave back litsomentol.

Anyhydrocetyllitsomentol (11b). Acetyllitsomentol (1 g) was mixed with fused KHSO₄ (2 g) and heated at 160° for 1 hr. The mixture was cooled. extracted with ether and the product chromatographed over Al₂O₃ in C₆H₆ to yield IIb (0.7 g). m.p. 114-115° (from MeOH). $[\alpha]_D + 62.7°$. v_{max} (Nujol) 1740 cm⁻¹ (Found : C. 81.72; H. 11.46. C₃₂H₅₂O₂ requires: C. 81.99; H. 11.18%). Mass spectrum : m/e 468 (M⁺) (48). 453 (4). 408 (37). 393 (8). 274 (100). 259 (48). 231 (6). 205 (12). 189 (14)· 173 (12). 163 (30). 150 (24). 134 (66), 123 (44). NMR (CDCl₃, 100 MHz · δ 5·47 (1H, dd, J = 6.1 cps). 5 05 (1H. t. J = 7 cps). 4·65 (1H. t. J = 2 cps). 1 96 (3H, s). 1·64 (3H. s). 1·56 (3H. s). 1·21 (3H. d. J = 6 cps). 1·02 (6H. s). 0·88 (3H. s). 0·79 (3H. s).

Anhydrolitsomentol (IIa): The acetate (IIb) (1 g) was refluxed for 4 hr with methanolic KOH (7%; 40 ml) to yield IIa (0.9 g). m.p. 90–92° (from MeOH). $[\alpha]_D + 39.4^{\circ}$. ν_{max} (Nujol) 3360 cm⁻¹. (Found: C. 84.26; H. 12.03. C₃₀H₅₀O requires: C, 84.44; H. 11.81%). Mass spectrum: m/e 426 (M⁺) (100), 411 (32), 408 (40), 393 (12). 275 (80), 274 (90), 259 (80), 231 (19), 205 (40), 163 (57), 149 (40), 134 (62), 123 (53), 109 (47).

(b): Dehydration of litsomentol (2 g) with fused KHSO₄ (3.6 g) at 160° for 45 min and chromatography of the product over Al₂O₃ in C₆H₆-hexane yielded IIa (0.7 g), identical with the above product.

Litsomentone (Ic). A soln of Ia (1 g) in Py (10 ml) was added to Py-CrO₃ complex (prepared from 1 g

CrO₃ and 10 ml Py) and the mixture stirred overnight at 25°. C₆H₆ (100 ml) was added, the soln filtered, washed with dil HCl and H₂O, dried and evaporated. The residue crystallised from MeOH as needles (0.8 g). m.p. 170-172°. $[\alpha]_D + 16\cdot3°$. ν_{max} (CH₂Cl₂) 1700 cm⁻¹. (Found: C. 81·29; H. 11·34. C₃₀H₅₀O₂ requires : C. 81·39; H. 11·38%). Mass spectrum : m/e 442 (M⁺) (66). 427 (100). 424 (11). 409 (8). 399 (9). 357 (11). 329 (13). 311 (7). 305 (4). 286 (16). 271 (4). 245 (5). 235 (8). 219 (9). 205 (21). 191 (7). 173 (9). NMR : δ 5·15 (1H. br). 1·7 (3H. d. J = 1·5 cps). 1·6 (3H. d. J = 1·5 cps). 1·17 (6H. s). 1·12 (3H. s). 1·03 (3H. s). 0·92 (3H. d. J = 6 cps). 0·86 (3H. s). ORD (dioxane. 2%): $[\alpha]_{590} + 16°. [\alpha]_{315} + 190°. [\alpha]_{285} - 260°.$ CD (dioxane): λ_{max} 298 mµ ($\Delta \varepsilon + 0.44$).

Reduction of litsomentone. (a) With NaBH₄. NaBH₄ (1 g) was added to a soln of Ic (0.8 g) In MeOH (60 ml), kept at 40-50° for 12 hr and concentrated to 30 ml. The solid (0.4 g) that separated was identical (m.m.p., TLC) with litsomentol. The filtrate was evaporated, diluted with H₂O and extracted with CHCl₃. TLC showed the product to be a mixture of litsomentol and a slightly more polar compound which could not be separated satisfactorily by chromatography. Acetylation of the mixture with Ac₂O (2 ml) and Py (1 ml) at 30° and chromatography over silica in C₆H₆ yielded 3-*epi*-acetyllitsomentol (le) (0.2 g). m.p. 167-169° (from CHCl₃-MeOH). which was depressed on admixture with acetyllitsomentol. [α]_D - 31·6°. ν_{max} (CHCl₃) 3600. 1725 cm⁻¹ (Found: C. 78·66; H. 11·33. C₃₂H₅₄O₃ requires: C. 78·96; H. 11·18%). Mass spectrum: *m/e* 486 (M⁺) (1). 471 (1). 468 (1). 426 (3). 411 (6). 393 (2). 357 (3). 344 (20). 329 (100). 259 (7). 231 (30). NMR: δ 5·1 (2H. m). 1·7 (3H. d, J = 1 cps). 1·6 (3H. d. J = 1 cps). 1·21 (3H. s).

(b) With LAH. Ic (0.5 g) in dry THF (35 ml) was reduced with LAH (1 g) in the usual manner to yield Ia (0.3 g) and Id (70 mg), the latter being characterised as the acetate (Ie).

(c) With Na and n-PrOH. A soln of Ic (0.8 g) in boiling n-PrOH (140 ml) was treated with Na (9 g). After refluxing for 1 hr. the soln was evaporated, diluted with H_2O and extracted with CH_2Cl_2 to yield Ia (0.2 g) and Id (0.4 g), the latter being characterised as the acetate (le).

Dihydroacetyllitsomentol (IIIb). A soln of acetyllitsomentol (Ib) (2 g) in a mixture of AcOH (50 ml) and EtOAc (50 ml) was shaken for 6 hr with H₂ (40 lbs/in²) in presence of PtO₂ (0·3 g). The soln was filtered. evaporated and the product crystallised from CHCl₃-MeOH to yield IIIb (1·9 g). m.p. 170°. $[x]_D + 26\cdot5^\circ$, $v_{max}(CH_2Cl_2)$ 1740 cm⁻¹ (Found: C. 78.68; H. 11.60. C₃₂H₅₆O₃ requires: C. 78.63; H. 11.55%). Mass spectrum: m/e 488 (M⁺) (1). 428 (10). 413 (11). 346 (80). 331 (100). 276 (6). 233 (7). 163 (5). 137 (5). 123 (7). 107 (10). 95 (20). NMR (CDCl₃. 100 MHz): δ 4·78 (1H. t. J = 1.5 cps). 3·05 (1H. s. OH). 2·04 (3H. s). 1·18 (3H. s). 1·02 (3H. s). 0·99 (3H. s). 0·93 (3H. s). 0·86 (6H. s).

Dihydrolitsomentol (IIIa). (a): Litsomentol (1 g) in EtOAc (70 ml) was reduced with H₂ at 50-60^c at 40 lbs/in² using PtO₂ (0·2 g) to yield IIIa (1 g). m.p. 218-220^o (from CHCl₃-MeOH). $[\alpha]_p$ + 1·6^c. ν_{max} (Nujol) 3340. 3260 cm⁻¹ (Found : C. 80·87; H. 12·15. C₃₀H₅₄O₂ requires : C. 80·65; H. 12·18%). This gave no colour with tetranitromethane. Mass spectrum : m/e 446 (M⁺) (<1). 428 (18), 413 (20). 346 (60). 331 (100). 276 (54). 261 (30). 233 (11). 163 (48), 152 (18). 150 (20). 134 (45). 123 (45). 107 (40). 95 (66).

(b): A soln of IIIb (2 g) in dioxane (60 ml) was refluxed with KOH (6 g) for 4 hr. concentrated *in vacuo* and diluted with H₂O to yield IIIa (1.8 g). m.p. $218-220^{\circ}$, identical with the above sample.

Acetylation of IIIa (Py. Ac₂O) gave IIIb.

Anhydrodihydroacetyllitsomentol (IVb). (a): Dehydration of IIIb (2 g) with fused KHSO₄ (4 g) and chromatography of the product over Al₂O₃ in hexane yielded IVb (1·3 g). m.p. 116-117° (from ether-MeOH). $[\alpha]_D + 58\cdot8°$, v_{max} (KBr) 1735 cm⁻¹ (Found: C. 81·86; H, 11·76. C₃₂H₅₄O₂ requires: C. 81·64; H. 11·56%). Mass spectrum : m/e 470 (M⁺) (4). 455 (4). 410 (10). 395 (10). 331 (6). 276 (100). 261 (75). 163 (90). 150 (45). 134 (59), 123 (60). 107 (30), 95 (45). NMR : δ 5·56 (1H. dd, J= 6, 2 cps). 4·75 (1H. t. J = 2 cps). 2·0 (3H. s). 1·05 (6H. s), 0·91 (9H. s). 0·87 (3H. s). 0·83 (3H, s).

(b): A soln of IIIb (0.2 g) in AcOH (5 ml) was heated with 2N H_2SO_4 (0.2 ml) at 110° for 1 hr. Dilution with H_2O and extraction with ether gave IVb (50 mg), identical with the above product.

Anhydrodihydrolitsomentol (IVa). A soln of IVb (2 g) in dioxan (20 ml) was refluxed with methanolic KOH (10%; 100 ml) for 4 hr to yield IVa (1.8 g), m.p. 98–100° (from CHCl₃–MeOH) $[\alpha]_D + 47.8°$, $v_{max}(CH_2Cl_2)$ 3600. 3450 cm⁻¹ (Found : C. 84.11 ; H. 12.33. C₃₀H₅₂O requires : C. 84.04 ; H. 12.23%). Mass spectrum : m/e 428 (M⁺) (7). 413 (12). 410 (4). 395 (8). 276 (67). 261 (80), 163 (100). 150 (61). 137 (43). 134 (70). 123 (67). 107 (33), 95 (50).

Epoxyacetyllitsomentol (V). Acetyllitsomentol (Ib) (0.5 g) was added to a CHCl₃ soln (15 ml) of perbenzoic acid containing 30 mg of peracid per ml. After 48 hr at 5°, the soln was washed with Na₂CO₃ aq. H₂O. dried. evaporated and the product chromatographed over Al₂O₃ in C₆H₆ to yield V (0.4 g). m.p. 182-184° (from CHCl₃-MeOH). (Found: C. 76.73; H. 11.05. C₃₂H₃₄O₄ requires: C. 76.44; H. 10.83%). NMR: δ 4.82 (1H. t. J = 3 cps). 3.03 (1H. br s. OH). 2.65 (1H. br). 2.09 (3H. s).

Ozonolysis of acetyllitsomentol. (a) Acetone. A soln of Ib (1 g) in CHCl₃ (40 ml) was ozonised at 0° and the product steam-distilled after addition of Zn dust (0·4 g), the exit tube dipping into a soln of 2.4-dinitrophenylhydrazine in MeOH. The product was chromatographed over Al_2O_3 in C_6H_6 to yield acetone 2.4-DNP, m.p. 120-122° (from MeOH), identical (m.m.p., TLC, IR) with an authentic sample.

(b) Acetyltrisnorlitsomentic acid (VIa). A soln of Ib (1 g) in EtOAc (50 ml) was ozonised at 0°. The soln was shaken for 1 hr with H₂ at 1 atm in presence of Pd-C catalyst (5%; 0·2 g), filtered and evaporated. The residue was crystallised from CHCl₃-MeOH to yield VIa (0·8 g), m.p. 263-265°. $[\alpha]_D + 15\cdot8°$, ν_{max} (Nujol) 1740 cm⁻¹. (Found: C. 73·21; H. 10·23. C₂₉H₄₈O₅ requires: C. 73·07; H. 10·15%). Mass spectrum: m/e 458 (M-H₂O) (26). 398 (80). 383 (48). 354 (28). 319 (37). 290 (41). 275 (72). 264 (46). 249 (22). 220 (56). 205 (40). 163 (100). NMR: δ 4·82 (1H. t. J = 1·5 cps). 2·1 (3H. s). 1·22 (3H, s). 1·03 (6H. s). 0·95 (3H. s). 0·83 (3H. s).

Methyl acetyltrisnorlitsomentate (VIb). The above acid (VIa) (0·2 g) in ether (20 ml) was treated with excess CH₂N₂ to yield VIb (0·2 g). m.p. 190–191° (from CHCl₃–MeOH). $[\alpha]_D + 17\cdot6^\circ$. v_{max} (Nujol) 1745. 1735 cm⁻¹. (Found: C. 73·72; H. 10·45. C₃₀H₅₀O₅ requires: 73·43; H. 10·27%). Mass spectrum: m/e 490 (M⁺) (<1). 472 (2). 430 (14). 415 (10). 348 (75). 333 (100). 330 (11). 278 (37). 233 (26). 215 (98). 209 (22). 206 (20). NMR: δ 481 (1H. t. J = 1.5 cps). 3.66 (3H. s). 2.1 (3H. s). 1.2 (3H. s). 1.02 (6H. s). 0.93 (3H. s). 0.8 (3H. s).

Methyl anhydroacetyltrisnorlitsomentate (VIIb). The ester VIb (0.8 g) was heated at 180-200° for 45 min with fused KHSO₄ (1.6 g) and the product chromatographed over silica gel in hexane to yield VIIb (0.25 g). m.p. 156-158° (from hexane). $[\alpha]_D + 55.8°$. v_{max} (KBr) 1735 cm⁻¹ (Found: C. 76.38; H. 10.45. C₃₀H₄₈O₄ requires: C. 76.22; H. 10.24%). NMR: δ 5.53 (1H. dd. J = 6.2 cps). 4.72 (1H. t. J = 2 cps). 3.66 (3H. s). 2.0 (3H. s). 1.05 (2H. s). 0.91 (3H. s). 0.87 (3H. s). 0.83 (3H. s).

Acetylanhydrotrisnorlitsomentic acid (VIIa). Dehydration of VIa (0.4 g) with fused KHSO₄ (0.8 g) as above yielded VIIa (80 mg). m.p. 228-231° (from MeOH) Found: C. 75.55; H. 10.21. $C_{29}H_{46}O_4$ requires: C. 75.94; H. 10.11%).

Osmylation of litsomentol. A soln of Ia (0.5 g) in dioxane (20 ml) was treated with OsO₄ (0.5 g) and Py (0.5 ml). After 3 days at 25°, the soln was saturated with H₂S and filtered. The filtrate was evaporated and the residue chromatographed over silica gel in CHCl₃. Elution with CHCl₃-MeOH (9:1) yielded the tetraol (VIIIa) (0.3 g). m.p. 190-193° (from C₆H₆-hexane). v_{max} (Nujol) 3350 cm⁻¹ (broad) (Found : C, 75.59; H, 11.22. C₃₀H₅₄O₄ requires: C, 75.26; H, 11.37%).

Osymlation of Ib as above yielded the triol (VIIIb). m.p. 230-232° (from C₆H₆-hexane). v_{max} (Nujol) 3580. 3520. 3400. 1730 cm⁻¹. (Found : C. 74·03; H. 10·97. C₃₂H₅₆O₅ requires : C. 73·80; H. 10·84%). NMR : δ 4·82 (1H. t. J = 2 cps). 2·56 (3H. br. s. OH). 2·1 (3H. s).

Trisnoraldehyde (VIc). A soln of VIIIb (0·3 g) in MeOH (50 ml) was treated with a soln of NaIO₄ (0·5 g) in H₂O (40 ml) and allowed to stand at 25° for 24 hr. Extraction with CH₂Cl₂ gave VIc (0·1 g). m.p. 210-213° (from aq MeOH). v_{max} (KBr) 3580. 1740. 1725 cm⁻¹ (Found: C. 75·20; H. 10·43. C₂₉H₄₈O₄ requires: C. 75·60; H. 10·50%). NMR : δ 9·8 (1H. t. J = 1·5 cps). 4·82 (1H. t. J = 1·5 cps). 2·1 (3H. s). 1·2 (3H. s). 1·2 (3H. s). 1·05 (3H. s). 0·95 (3H. s). 0·81 (3H. s).

SeO₂ oxidation of acetyllitsomentol. A soln of Ib (1 g) in AcOH (50 ml) was heated at 90° for 2 hr with SeO₂ (1 g). The soln was filtered evaporated *in vacuo* and the residue chromatographed over silica gel in C₆H₆. The column was eluted with C₆H₆ and then with C₆H₆-CHCl₃ (3:1). 10 ml fractions. monitored by TLC. The less polar product crystallised from MeOH to yield Ild (60 mg). m.p. 138-141°. λ_{max} 230 mµ (log ε 4·20). v_{max} (KBr) 1740. 1690. 1635 cm⁻¹. (Found: C. 79·76; H. 10·62. C₃₂H₅₀O₃ requires: C. 79·62; H. 10·44%₀). Mass spectrum: *m/e* 482 (M⁺) (21). 422 (48). 407 (16). 290 (26). 288 (32). 279 (45). 275 (32). 167 (24). 149 (100). NMR : δ 9·43 (1H. s). 6·5 (1H. t. J = 8 cps). 5·55 (1H. q. J = 6. 1·5 cps). 4·75 (1H. t. J = 2 1·75 (3H. d. J = 1·5 cps). 1·27 (3H. s). 1·05 (6H. s). 0·93 (3H. s). 0·87 (3H. s). The more polar product crystallised from MeOH to give Ih (90 mg), m.p. 165-167°. λ_{max} 230 mµ (log ε 4·23). v_{max} (KBr) 3580. 1735. 1685. 1640 cm⁻¹ (Found: C. 76·38; H. 10·50. C₃₂H₅₂O₄ requires: 76·75; H. 10·47%). Mass spectrum: *m/e* 482 (M-H₂O) (1). 440 (5). 358 (60). 343 (90). 279 (15). 149 (100), 134 (55). 121 (57). 113 (64). 109 (65). 95 (63). NMR : δ 9·43 (1H. s). 6·5 (1H. t. J = 7 cps). 4·82 (1H. t. J = 1 cps). 3·1 (1H. br s. OH). 2·1 (3H. 1·75 (3H. d. J = 1 cps). 1·22 (3H. s). 1·05 (3H. s). 0·95 (3H. s). 0·83 (3H. s).

p-Bromobenzoyllitsomentol (If). A soln of Ia (0.5 g) in C_6H_6 (10 ml) and Py (10 ml) was refluxed for 5 hr with p-bromobenzoyl chloride (1 g). cooled and poured on ice. Extraction with ether and chromatography of the product over silica gel in C_6H_6 yielded If (0.3 g). m.p. 205-207° (from CHCl₃-MeOH). $v_{max}(CH_2Cl_2)$ 3610. 1735 cm⁻¹. (Found: C. 71-04; H. 8.87. $C_{37}H_{55}O_3Br$ requires: H. 8.77%). NMR: δ 7.88 (2H. d. J = 9 cps). 7-6 (2H. d. J = 9 cps). 5-1 (1H. br). 5-02 (1H. t. J = 1.5 cps). 4-6 (1H. s. OH). 1-7 (3H. d. J = 1 cps). 1-6 (3H. d. J = 1 cps). 1-23 (3H. s). 1-1 (3H. s). 1-07 (3H. s). 1-05 (3H. s). 0-83 3H. s). Iodoacetylanhydrolitsomentol (IIc). A soln of Ia (0.5 g) in dry dioxane (10 ml) was treated with chloroacetyl chloride (1 ml). After 48 hr at 30°. H₂O was added and the solid obtained chromatographed over silica gel in C₆H₆-hexane to give chloroacetylanhydrolitsomentol (0.3 g). m.p. 93-96° (from MeOH). This was refluxed for 3 hr in acetone (20 ml) with KI (0.8 g). filtered and evaporated. Extraction with CHCl₃ and chromatography of the product over silica gel in C₆H₆-hexane yielded IIc (0.2 g). m.p. 100-102° (from MeOH). v_{max} (Nujol) 1735 cm⁻¹. (Found: C. 64·54: H. 8·45. C₃₂H₅₁O₂I requires: C. 64·65; H. 8·62%). NMR : δ 5·55 (1H. dd. J = 6.1 cps). 5·1 (1H. br). 4·73 (1H. t. J = 1.5 cps). 3·66 (2H. s). 1·6 (6H, br s). 1·07 (6H. s). 0·93 (3H. s). 0·87 (3H. s). 0·83 (3H. s).

Isoachydrolitsomentol (IX). Ia (2 g) was heated at 70-80° for 2 hr with $MeSO_2Cl$ (3 ml) and Py (5 ml). Addition of H_2O and extraction with CH_2Cl_2 yielded a brownish gum. chromatographed over silica gel in C_6H_6 . Elution with C_6H_6 -CHCl₃ (3:1) yielded IX (0.4 g). m.p. 131-132° (from MeOH). $[\alpha]_D - 40.6^\circ$. $\nu_{max}(CH_2Cl_2)$ 3580 cm⁻¹ (Found: C. 84.25: H. 11.83. $C_{30}H_{50}O$ requires: C. 84.44; H. 11.81%). Mass spectrum: m/e 426 (M⁻) (6). 408 (40). 393 (28). 344 (34). 329 (96). 274 (100). 259 (37). 231 (20). 205 (11). 163 (24). 150 (22). 134 (52). 123 (50). 119 (49). 109 (39). 95 (47). 81 (37). 69 (60). NMR : δ 5.7 (1H. m). 5.3 (1H. d. J = 9 cps). 5.15 (1H. br). 1 7 (3H. s). 1.6 (3H. s). 1.25 (6H. s). 1.03 (9H. s). 0.97 (3H. s). 0.87 (3H. s).

Isoanhydrodihydrolitsomentol (X). IIIa (3·3 g) was heated at 50-60° for 2 hr with MeSO₂Cl (8 ml) and Py (15 ml) and worked up as above. Chromatography over silica gel in C₆H₆ gave. in the earlier fractions. X (0·8 g). m.p. 130-132° (from ether-MeOH). $[\alpha]_D - 5\cdot6^\circ$. $v_{max}(CH_2Cl_2)$ 3580 cm⁻¹. (Found: C, 84·29: H, 12·34. C₃₀H₅₂O requires: C, 84·04; H. 12·23%). Mass spectrum: m/e 428 (M⁺) (1). 413 (3). 395 (2). 346 (33), 331 (100). 313 (4). 233 (15). 207 (7). 206 (7). 191 (5). 163 (6). 151 (6). 137 (9). 123 (14). 109 (20). 95 (40), NMR: δ 5·65 (1H. m). 5·25 (1H. dd. $J = 9\cdot1$ cps). 1·25 (6H. s). 1·03 (9H. s). 0·97 (3H. s). 0·87 (3H. s). 0·87 (3H. s). 0·8 (3H. s). The later fractions in the chromatography eluted by C₆H₆-CHCl₃ (1:1) yielded the mesylate (IIIc) (1·5 g). m.p. 185° (d) (from ether-MeOH). v_{max} (CH₂Cl₂) 3580 cm⁻¹ (Found: C. 68·70; H. 10·45. C₃₁H₅₆O₅S requires: C. 68·85; H. 10·44%). Use of more Py and higher temp resulted in more of X and less of IIIc.

3-Desoxydihydrolitsomentol (IIId). A soln of X (1.6 g) in EtOAc (60 ml) was reduced with H₂ in an Ente apparatus at 40° for 12 hr in presence of Pd-C (10%; 0.5 g). Chromatography of the product over silica gel in C₆H₆ yielded IIId (1.1 g). m.p. 114° (from CH₂Cl₂-MeOH). $[\alpha]_D = 8.8°$. (Found: C. 83.37; H, 12.69. C₃₀H₅₄O requires: C. 83.65; H. 12.64%). Mass spectrum: *m/e* 430 (M⁺) (7). 415 (100). 397 (6). 345 (4), 331 (16). 276 (10). 261 (10). 207 (8). 193 (7). 181 (5). 177 (10). 163 (19). 150 (7). 136 (16). 123 (22). 121 (21). 109 (30). 107 (25). 95 (60). The compound could also be obtained by hydrogenation of IX as above.

3-Desoxyanhydrodihydrolitsomentol (IVe). A mixture of IIId (0.5 g) and fused KHSO₄ (1.5 g) was heated at 120° for 1 hr. Extraction with CH₂Cl₂ and chromatography over Al₂O₃ in hexane yielded IVe (0.2 g). m.p. 60-62° (from ether-MeOH). $[\alpha]_D + 47.2°$. v_{max} (KBr) 1650 cm⁻¹. (Found: C. 87.35; H. 12.90. C₃₀H₅₂ requires: C. 87.30; H. 12.70%). Mass spectrum: m/e 412 (M⁺) (10). 397 (22). 276 (90). 261 (80). 257 (10). 207 (7). 205 (7). 191 (11). 189 (11). 177 (33). 163 (100). 150 (68). 136 (80). 123 (62). 121 (54). 109 (40). 107 (42). 105 (40). 95 (67). NMR; δ 5.5 (1H. d. J = 6 cps).

Diene (XI). (a) Ia (1 g) was added to a stirred suspension of PCl₅ (0.7 g) in dry hexane (25 ml). After 2 hr. the soln was washed with aq NaHCO₃. H₂O, dried, evaporated and the product chromatographed over Al₂O₃ in pentane to yield XI (0.5 g), as a gum homogeneous by TLC. λ_{max} 243 mµ (log ε 3.70). The later fractions gave IX (0.1 g), identical with the compound mentioned earlier.

(b) Ia (0.5 g) was refluxed with HCOOH (98%; 5 ml) for 45 min and worked up as above to yield XI (0.2 g). identical (TLC. UV. IR. NMR) with the above sample.

Diene (XII). (a) A soln of IVa (0.4 g) in CHCl₃ (25 ml) was stirred for 16 hr at 25° with PCl₅ (0.8 g) and worked up as above to yield XII (0.2 g) as a gum homogeneous by TLC. λ_{max} 245 mµ (log ε 3.67). NMR : δ 5.75 (1H. br). 1.72 (6H. s). 0.9 (6H. s). 0.87 (6H. s).

(b) IVa (1 g) was heated at 70° for 3 hr with MeSO₂Cl (4 ml) and Py (5 ml) to yield the mesylate (IVc) (0.5 g). m.p. 115-117° (d) (from ether-MeOH). (Found: C. 73.09; H. 10.85. $C_{31}H_{54}O_3S$ requires: C. 73.47: H. 10.74%). NMR: δ 5.58 (1H. dd. J = 6.1 cps). 4.58 (1H. t. J = 1.5 cps). 2.97 (3H. s). A soln of IVc (0.7 g) and NaOAc (0.5 g) in AcOH (30 ml) was heated at 95° for 2 hr and the solvent removed in vacuo. Addition of H₂O. extraction with ether and chromatography of the product over silica in hexane yielded XII (0.2 g). identical (TLC. UV. IR. NMR) with the above sample.

Anhydrodihydrolitsomentone (IVd). A soln of IVa (2 g) in Py (15 ml) was added to Py-CrO₃ complex (from 2 g CrO₃ and 20 ml Py) at 5-10°. The mixture was stirred for 16 hr at 25° and worked up as usual. Chromatography over silica gel in C₆H₆ yielded IVd (1 g). m.p. 72-74 (from EtOH). $[\alpha]_D + 45.4$. λ_{max} 290 mµ (log ε 1.95). ν_{max} (KBr) 1710 cm⁻¹. (Found: C. 84.64; H. 11.87. C₃₀H₅₀O requires: C. 84.44; H. 11.81%). Mass spectrum: m'e 426 (M⁺) (10). 411 (10). 393 (3). 331 (8). 276 (100). 261 (68). 163 (96). 150 (53). 137 (44).

123 (51). 107 (35). 95 (47). NMR: δ 5.7 (1H. d. J = 6 cps). 1.23 (3H. s. C₄-Me). 1.22 (3H. s. C₄-Me). ORD (dioxane. 2%): $[\alpha]_{590} + 30^{\circ}$. $[\alpha]_{420} + 120^{\circ}$. $[\alpha]_{390} + 70^{\circ}$. $[\alpha]_{370} + 90^{\circ}$. $[\alpha]_{320} - 530^{\circ}$. $[\alpha]_{265} + 2100^{\circ}$. CD (dioxane): $\lambda_{\text{infl}} 312 \text{ m}\mu (\Delta \epsilon - 1.03)$. $\lambda_{\text{max}} 304 \text{ m}\mu (\Delta \epsilon - 1.73)$. $\lambda_{\text{max}} 295 \text{ m}\mu (\Delta \epsilon - 1.79)$. The later fractions in the chromatography yielded the diketone (XVb) (0.3 g). m.p. 149-151^{\circ} (from CH₂Cl₂-MeOH). $\lambda_{\text{max}} 248 \text{ m}\mu (\log \epsilon 4.03)$. $[\alpha]_D \pm 0^{\circ}$. $v_{\text{max}} (\text{CH}_2\text{Cl}_2)$ 1700. 1635. 1600 cm⁻¹. (Found: C. 81.79; H. 11.01. C₃₀H₄₈O₂ requires: C. 81.76; H. 10.98%). NMR: δ 6.18 (1H. d. J = 1.5 cps).

Thioketal (IVf). A soln of IVd (1·2 g) in ethanedithiol (3 ml) was cooled to 5^c and treated with BF₃. Et₂O (3 ml). After 48 hr at 25^o. H₂O was added and the product extracted with ether to yield IVf (1·1 g). m.p. 140–142^o (from CH₂Cl₂-MeOH. (Found: C. 76.79; H. 10·80, $C_{32}H_{54}S_2$ requires: C. 76.44; H. 10·83%). Mass spectrum: *m/e* 502 (M⁻¹) (1). 409 (1). 371 (1). 151 (2). 147 (2). 133 (10). 132 (8). 131 (100). 123 (3). 121 (4). 119 (5). 109 (4). 105 (4). 95 (9). 93 (5). 91 (4).

Diosphenol (XIIIa). IVd (0.6 g) was added to a soln of t-BuOK (prepared from 0.3 g K in 20 ml t-BuOH). stirred in O₂ for 3 hr. poured on ice. acidified with conc HCl and extracted with ether. Chromatography of the product over silica gel in C₆H₆ yielded XIIIa as an uncrystallisable gum. homogeneous by TLC which gave a positive FeCl₃ test. $\lambda_{max}273$ mµ. shifted to $\lambda_{max}315$ mµ on addition of KOH. $v_{max}(CH_2Cl_2)$ 3680. 3580. 1705. 1675 cm⁻¹. NMR : $\delta 6.12$ (1H. d. J = 2.5 cps). 5.65 (1H. m). 5.35 (1H. br. OH). 3.41 (1H. t. J = 2.5 cps).

Diosphenol methyl ether (XIIIb). A soln of XIIIa (0.7 g) in acetone (30 ml) was refluxed for 5 hr with anhydrous K_2CO_3 (5 g) and MeI (5 ml). filtered and evaporated. Chromatography of the residue over silica gel in C_6H_6 -CHCl₃ (1:1) yielded XIIIb (0.25 g). m.p. 115-117° (from MeOH). $\lambda_{max} 265 \text{ m}\mu$ (log ε 3.86). $\nu_{max}(CH_2Cl_2)$ 1690. 1670. 1635 cm⁻¹ (Found: C. 82.15: H. 11.35. $C_{31}H_{50}O_2$ requires: C. 81.88: H. 11.08°/) NMR (CDCl₃. 100 MHz); δ 5.78 (1H. d. J = 2.5 cps). 5.68 (1H. t. J = 2.5 cps). 3.41 (1H, br s. width at half height 8 cps). 1.24 (3H. s). 1.2 (3H. s), 0.89 (12H. s). 0.83 (6H, s). Irradiation of the signal at δ 3.41 gives a sharp singlet at δ 5.78 and a neat quartet at δ 5.68 (J = 2.5 cps).

Catalytic reduction of IVb. A soln of IVb (1 g) in AcOH (150 ml) was shaken with H₂ at 700-900 lbs/in² at 100° for 16 hr in presence of PtO₂ (1 g). filtered and evaporated. Repeated crystallisation of the residue from ether-MeOH gave XIVb (0·1 g). m.p. 168-170°. which gave no colour with tetranitromethane. NMR : $\delta 4\cdot64$ (1H. t. J = 1.5 cps). 2·05 (3H. s). 1·03 (3H. s). 1·0 (3H. s). 0·9 (6H. s). 0·88 (3H. s). 0·87 (3H. s). 0·8 (6H. s).

The acetate (XIVb) (55 mg) in dioxane (15 ml) was refluxed with KOH (0-3 g in 1 ml H_2O) for 3 hr to yield XIVa. m.p. 153–155° (from MeOH). Mass spectrum: m/e 430 (M⁺) (20). 412 (20). 397 (7). 290 (50). 276 (25). 275 (25). 272 (21). 259 (30). 189 (60). 175 (100). 163 (36).

Ethyl ether (IVg). A soln of IVb (1 g) and LiBH₄ (0.7 g) in dry ether (25 ml) was treated with a soln of BF₃. Et₂O (0.3 ml) in ether (2 ml). After stirring at 25° for 4 hr. H₂O (0.5 ml) was added followed by a soln of conc H₂SO₄ (0.4 ml) in H₂O (3 ml). The soln was stirred for 16 hr at 25° and then refluxed for $\frac{1}{2}$ hr. Extraction with ether and chromatography of the product over silica gel in C₆H₆ yielded IVg (0.3 g). m.p. 76-77° (from ether-MeOH) which gave a yellow colour with tetranitromethane (Found: C. 83.66; H. 12.50. C₃₂H₅₆O requires: C. 84.14; H. 12.36%). Mass spectrum: *m/e* 456 (M⁺) (32). 441 (7). 410 (11). 395 (6). 276 (100). 261 (33). 180 (62). 163 (60). NMR : δ 5.5 (1H. d. J = 6 cps). 3.42 (2H. m). 3.02 (1H. t. J = 1.5 cps).

7-Oxoanhydrodihydroacetyllitsomentol (XVa). (a) With O₃. A soln of IVb (0.5 g) in EtOAc (30 ml) was ozonised at 0°, shaken with H₂ at 1 atm in presence of Pd-C (5%; 0.1 g) for 2 hr. filtered and evaporated. The residue was chromatographed over silica gel in C₆H₆. The initial fractions yielded a gum. Further elution with C₆H₆-CHCl₃ (1:1) gave XVa (0.2 g). m.p. 204-205° (from MeOH). $[\alpha]_D + 117.6^\circ$. $\lambda_{max} 247 \text{ m}\mu$ (log ε 4.06). ν_{max} (CH₂Cl₂) 1730. 1655. 1620 cm⁻¹. (Found: C. 78.87; H. 10.70. C₃₂H₅₂O₃ requires: C. 79.28; H. 10.81%). NMR : δ 6.1 (1H. d. J = 1.5 cps). 4.85 (1H. t. J = 1.5 cps). 2.7 (1H. br). 2.41 (1H. s). 2.0 (3H. s).

(b) With CrO_3 . A soln of IVb (0.4 g) in AcOH (20 ml) was heated with CrO_3 (0.4 g) at 65–70° for 2 hr and left at 25° for 16 hr. Addition of H₂O and extraction with ether gave XVa (0.3 g), identical with the above sample.

LAH reduction of XVa. A soln of XVa (1·2 g) in ether (60 ml) was refluxed for 6 hr with LAH (2 g) and worked up as usual. Chromatography of the product over silica gel in C_6H_6 -CHCl₃ (1:1) yielded XIVc (0·5 g). m.p. 161-163° (from MeOH). λ_{max} 295 mµ (log ε 1·85). v_{max} (CH₂Cl₂) 3620. 1690 cm⁻¹. (Found: C. 80·75: H. 11·85. $C_{30}H_{32}O_2$ requires: C. 81·02; H. 11·79%). NMR: δ 3·46 (1H. t. J = 2 cps).

5.6- β -Epoxyanhydrodihydroacetyllitsomentol (XVI). A soln of IVb (2·3 g) in CHCl₃ (60 ml) was treated with *m*-chloroperbenzoic acid (2·5 g) and allowed to stand at 5° for 48 hr. The soln was washed with aq Na₂CO₃ and H₂O, dried and evaporated. Chromatography of the residue over Al₂O₃ in C₆H₆-hexane (1:1) yielded the epoxide (2 g). m.p. 98–99° (from EtOAc-MeOH). (Found: C. 78·87; H. 11·19. C₃₂H₅₄O₃ requires: C. 78·96; H. 11·18%). NMR: δ 4·82 (1H. t. J = 3 cps). 3·13 (1H. d. J = 5 cps). 2·09 (3H. s).

Diol (XVIIb). A soln of IVb (1.5 g) in dioxane (40 ml) containing Py (1 ml) was treated with OsO₄ (1

g) and allowed to stand at 25° for 5 days. The soln was saturated with H_2S filtered. evaporated and chromatographed over silica gel in C_6H_6 . Elution with C_6H_6 gave some unreacted IVb. Further elution with CHCl₃-5% MeOH yielded XVIIb (1 g). m.p. 130–132° (from MeOH). (Found: C. 76.46; H. 11.34. $C_{32}H_{56}O_4$ requires: C. 76.14: H. 11.18%).

Ketol (XVIId). A soln of XVIIb (0.4 g) in acetone (15 ml) was treated at 5-10 with Jones reagent (0.6 ml). After 5 min. acetone saturated with SO₂ was added. followed by aq K₂CO₃. Extraction with ether and chromatography of the product over silica gel in C₆H₆ yielded XVIId (0.15 g). m.p. 162–163° (from EtOAc-MeOH). v_{max} (CH₂Cl₂) 3560. 1730. 1710 cm⁻¹. (Found: C. 76.08; H. 11.06. C₃₂H₅₄O₄ requires: C. 76.44; H. 10.83%).

Triol (XVIIa). A soln of XVIIb (0.4 g) in dioxane (20 ml) was refluxed with methanolic KOH (7%; 30 ml) for 5 hr. concentrated *in vacuo* and diluted with H₂O. The solid that separated was crystallised from MeOH to yield XVIIa (0.3 g), m.p. 165–166°. (Found: C. 78·11; H. 11·85. $C_{30}H_{54}O_3$ requires: C. 77·86; H. 11·76%).

Ketoacetate (XVIIIb). XVIIb (0·3 g) was heated at 55' for 3 hr with MeSO₂Cl (0·6 ml) and Py (3 ml). cooled, poured on H₂O and extracted with ether. Chromatography over silica gel in C₆H₆ gave in the initial fractions XVIIIb (50 mg) as an uncrystalline gum. v_{max} (CH₂Cl₂) 1735. 1705 cm⁻¹. NMR: δ 5·48 (1H. t. J = 9 cps). 3·3 (1H. br). 2·07 (3H. s). 1·12 (3H. s). 0·97 (3H. s). 0·92 (6H. s). 0·89 (3H. s). 0·83 (3H. s). 0·8 (3H. s). The later fractions in the chromatography gave the mesylate (XVIIc) (0·2 g). m.p. 135–136° (d) (from ether-MeOH). v_{max} (CH₂Cl₂) 3580. 1740 cm⁻¹. (Found: C. 68·08; H. 10·15. C₃₃H₅₈O₆S requires: C. 68·01; H. 10·03", .). The mesylate (100 mg) on refluxing with γ -collidine (3 ml) for 2 hr and working up as above yielded XVIIIb (50 mg), identical (TLC. IR. NMR) with the above sample.

Ketoalcohol (XVIIIa). XVIIIb (0.3 g) was refluxed with methanolic KOH (10%: 10 ml) for 3 hr to give XVIIIa (0.2 g). m.p. 224–226° (from CHCl₃–MeOH). v_{max} (CH₂Cl₂) 3610. 1705 cm⁻¹ (Found: C. 80-75; H. 11.79. C₃₀H₅₂O₂ requires: C. 81-02: H. 11.79%). Acetylation (Py. Ac₂O) of XVIIIa gave XVIIIb. identical (TLC. IR. NMR) with the above sample.

Benzilic ester (XXIIIb). The diosphenol (XIIIa) (1.6 g) was refluxed in N₂ for 7 hr with a soln of KOH (2.4 g) in H₂O (6 ml) and EtOH (70 ml). The soln was evaporated. diluted with H₂O, acidified with HCl and extracted with ether to yield the benzilic acid (XXIIIa) as an uncrystallisable gum. The acid (1 g) in ether (20 ml) was treated with excess ethereal CH₂N₂ and the product chromatographed in C₆H₆ over silica gel to yield XXIIIb as an uncrystallisable gum (0.9 g) homogeneous by TLC. v_{max} (CH₂Cl₂) 3560. 1718 cm⁻¹. NMR : δ 5.33 (1H. dd. J = 3 cps). 3.72 (3H. s). 2.9 (1H. br s. OH).

Diol (XXIIIc). A soln of XXIIIb (1 g) in dry ether (50 ml) was refluxed with LAH (0.8 g) for 3 hr with stirring and worked up as usual to yield XXIIIc (0.9 g). m.p. 177-179° (from ether-hexane). (Found: C. 80.70; H. 11.87. $C_{30}H_{52}O_2$ requires: C. 81.02; H. 11.79%).

Anhydrodihydronorlitsomentone (XXIVa). A soln of NaIO₄ (1·3 g) in H₂O (60 ml) was added to a soln of the diol (0·9 g) in dioxane (150 ml). After 24 hr at 25°, the soln was concentrated *in vacuo* to 50 ml, diluted with H₂O and extracted with CH₂Cl₂. Chromatography of the product over silica gel in CH₂Cl₂ gave XXIVa (0·5 g). m.p. 100-101° (from CH₂Cl₂ · MeOH). v_{max} (CH₂Cl₂) 1740 cm⁻¹. (Found: C. 80·57; H. 11·43. C₂₀H₄₈O.MeOH requires: C. 81·02 H. 11·79%). NMR: δ 5·53 (1H. d. J = 6, 3 cps). 1·1 (3H. s). 1·05 (3H. s). 0·9 (6H. s). 0·87 (9H. s). 0·85 (3H. d. J = 6 cps).

Ene-dione (XXIVb). A soln of XXIVa (0.5 g) in AcOH (10 ml) was heated at 70° for 2 hr with CrO₃ (0.6 g). diluted with H₂O and extracted with CH₂Cl₂. Chromatography over silica gel in CH₂Cl₂ yielded XXIVb (0.2 g). m.p. 210-212° (from CH₂Cl₂-hexane). λ_{max} 245 mµ (log ε 4.02). v_{max} (KBr) 1745. 1645 cm⁻¹. (Found: C. 81.95; H. 11.06. C₂₉H₄₆O₂ requires; C. 81.63; H. 10.87%). NMR : δ 6.06 (1H. d. J = 3 cps). 3.6 (1H. m). 2.5 (2H. m). 2.5 (1H. s).

Diene-dione (XXIIb). A mixture of XXIVb (50 mg) and SeO₂ (0·15 g) in t-BuOH (4 ml) containing AcOH (0·1 ml) was refluxed in N₂ for 4 hr. evaporated *in vacuo* and extracted with CH₂Cl₂. Chromatography of the product in CH₂Cl₂ over silica gel impregnated with 2% Ag NO₃ yielded the diene-dione (30 mg). m.p. 160-162° (from CH₂Cl₂-MeOH) λ_{max} 286 mµ (log ε 4·33). ν_{max} (K Br) 1705. 1655. 1575 cm⁻¹. (Found : C. 82·77 : H. 10·73. C₂₉H₄₄O₂ requires : C. 82·02 ; H. 10·44%). Mass spectrum : *m/e* 424 (M⁺) (30), 409 (18), 396 (55). 311 (11). 269 (30). 256 (20). 241 (72). 234 (72). 213 (30). 207 (33). 202 (72). 190 (98). 189 (100). 161 (62). 149 (23). 121 (70). NMR : δ 6·23 (1H. d. J = 1·5 cps). 6·09 (1H. d. J = 1·5 cps). 2·75 (1H. s). 1·27 (3H. s). 1·21 (9H. s). 0·95 (3H. s). 0·8 (3H. s). 0·71 (3H. s). CD (dioxane): λ_{max} 346 ($\Delta \varepsilon$ - 2·10). 284 (+ 5·56). 252 mµ (+4·74).

BF₃-catalysed rearrangement of the epoxide (XVI). A soln of XVI (2 g) in dry ether (150 ml) was treated with BF₃.Et₂O (3 ml) and allowed to stand at 25° for 48 hr. The soln was washed with aq Na₂CO₃ and

H₂O. dried and evaporated. Chromatography of the residue over silica gel in C₆H₆ yielded the acetate XXVIIb (1·3 g) as an amorphous solid. $[\alpha]_D + 48.2^\circ$. $v_{max}(KBr)$ 3500. 1720. 1630 cm⁻¹. Hydrolysis of the acetate (0·3 g) with methanolic KOH (7%; 25 ml) yielded the diol (XXVIIa). m.p. 179–180° (from MeOH). $[\alpha]_D + 34.71^\circ$. $v_{max}(CH_2Cl_2)$ 3610. 1610 cm⁻¹. (Found : C. 80-85: H. 11-94. C₃₀H₅₂O₂ requires: C. 81-02: H. 11.79%). Mass spectrum : m/e 444 (M⁺) (4). 429 (6). 426 (100). 411 (30). 408 (4). 393 (22). 340 (10). 313 (12). 271 (11). 253 (5). NMR : δ 5·32 (1H. m). 4·54 (1H. t. J = 3 cps). 3·15 (1H. br).

Ketoacetate (XXVIIc). The hydroxyacetate (XXVIIb) (0.5 g) was oxidised with Py–CrO₃ complex (from 0.5 g CrO₃ and 5 ml Py) and worked up as usual to yield XXVIIc (0.25 g). m.p. 145° (from CH₂Cl₂-MeOH). $[\alpha]_D + 70.2^{\circ}$. v_{max} (KBr) 1735. 1710 cm⁻¹ (Found: C. 79.35; H. 10.74. C₃₂H₅₂O₃ requires: C. 79.28; H. 10.81%). Mass spectrum: m/e 484 (M⁺) (100). 469 (53). 424 (2). 409 (17). 391 (7). 315 (13). 303 (24). 274 (80). 269 (40). 260 (53). 259 (68). 255 (37). 243 (18). 207 (16). 189 (17). 169 (45). 161 (25). NMR: δ 5.51 (1H. dd. J = 6, 3 cps). 4.4 (1H. br). 2.05 (3H. s). 1.35 (6H. s). 1.1 (3H. s). 0.97 (3H. s). 0.92 (6H. s)

Diene (XXVIIIb). The hydroxyacetate (XXVIIb) (0.7 g) was heated at 60° for 2 hr with MeSO₂Cl (1.5 ml) and Py (5 ml) and the soln left for 16 hr at 30°. Extraction with CH₂Cl₂ and chromatography of the product over silica gel in C₆H₆-hexane (1:1) yielded the unconjugated diene (XXVIIIb) (0.25 g). m.p. 132-133° (from EtOAc-MeOH). $[\alpha]_D$ + 41.8°. ν_{max} (CH₂Cl₂) 1730 cm⁻¹. (Found: C. 82.28: H. 11.13. C₃₂H₅₂O₂ requires: C. 81.99: H. 11.18%). Mass spectrum: m/e 468 (M⁺) (95). 453 (61). 408 (40). 393 (100). 340 (7). 171 (19). NMR : δ 5.73 (1H. t. J = 3 cps). 5.38 (1H. dd. J = 6, 2 cps). 4.53 (1H. t. J = 6 cps). 2.03 (3H. s).

Hydrolysis of XXVIIIb (0.4 g) with methanolic KOH (10%; 20 ml) yielded XXVIIIa (0.3 g). m.p. 110° (from CH₂Cl₂-MeOH). $[\alpha]_D$ + 8.4°. (Found: C. 84.59: H. 11.63. C₃₀H₅₀O requires: C. 84.44; H. 11.81%). NMR: δ 5.72 (1H. t. J = 3 cps). 5.37 (1H. dd. J = 5, 3 cps). 3.27 (1H. t. J = 6 cps).

Dihydroagnosterol (XXIXa). Freshly distilled ethylenediamine (15 ml) was treated at 100° in N₂ with stirring with Li (0·4 g) and the soln heated at 100° for 1 hr till the blue colour faded completely. To this was added the diene (XXVIIIb) (0·5 g) and the soln heated at 100° for 5 hr. After 15 hr more at 30°. H₂O was added followed by conc HCl and the mixture extracted with CHCl₃. The CHCl₃ extract was washed with HCl and H₂O. dried and evaporated. Chromatography of the product over silica gel in C₆H₆-CH₂Cl₂ (1:1) yielded the conjugated diene. dihydroagnosterol (XXIXa) (0·3 g). m.p. 157° (from CH₂Cl₂-MeOH). [α]_D + 65·3°. λ_{max} 236. 244. 252 mµ (log ε 4·07. 4·13. 3·96). v_{max} (CH₂Cl₂) 3600 cm⁻¹. (Found: C. 82·74. 82·67 : H. 11·85. 11·82. Calc for C₃₀H₅₀O. 0·5 MeOH : C. 82·75; H. 11·84%). Mass spectrum : *m/e* 426 (M⁺) (100). 411 (75). 408 (6). 393 (53). 313 (24). 271 (100). 258 (29). 253 (58). 240 (44). 185 (29). 171 (55). 157 (50). 145 (57). NMR : δ 5·4 (2H. m). 3·25 (1H. t. J = 7 cps).

Acetylation of the product (0.5 g) with Ac₂O (4 ml) and Py (5 ml) at 80° for 4 hr yielded the acetate (XXIXb) (0.4 g). m.p. 167-168° (from CH₂Cl₂-MeOH). $[\alpha]_D + 79.6^{\circ}$, $\lambda_{max} 235$. 243. 252 mµ (log ε 4.31. 4.37. 4.18). ν_{max} (KBr) 1725 cm⁻¹. (Found: C. 82.38; H. 11.51. Calc for C₃₂H₅₂O₂: C. 81.99: H. 11.18%). NMR : δ 5.4 (2H. br). 4.52 (1H. br). 2.05 (3H. s). The sample was identical (m.m.p. TLC. UV. IR) with an authentic sample of acetyldihydroagnosterol.

Acknowledgement—We are grateful to Professor G. Ourisson Strasbourg, for the CD curves, some authentic samples and helpful correspondence. We thank Professor O. Jeger. Zürich, and Professor D. H. R. Barton, for samples of acetyldihydroagnosterol. Dr. H. Hürzeler, CIBA-GEIGY, for the mass spectra and ORD curves, Dr. H. Fuhrer. CIBA-GEIGY, for the 100 MHz NMR spectra and Dr. S. Selvavinayakam for the analytical data.

REFERENCES

- ¹ N. P. Damodaran and S. Dev. Tetrahedron Letters 1941 (1963)
- ² Preliminary communication. T. R. Govindachari. N. Viswanathan and P. A. Mohamed. *Chem. Comm.* 665 (1971)
- ³ G. Ourisson. P. Crabbć and O. Rodig. 'The Tetracyclic Triterpenes' Holden-Day. San Francisco (1964)
- ⁴ R. M. Moriarty and E. S. Wallis. J. Org. Chem. 24. 1274. 1987 (1959)
- ⁵ G. Biglino, J. M. Lehn and G. Ourisson. Tetrahedron Letters 1651 (1963)
- ⁶ H. Budzikiewiez, C. Djerassi and D. H. Williams, 'Interpretation of Mass Spectra of Organic Compounds', p. 58. Holden-Day, San Fransisco (1964)
- ⁷ D. Lavie, Y. Shvo, O. R. Gottlieb and E. Glotter, J. Org. Chem. 27, 4546 (1962)
- ⁸ P. Witz, H. Herrmann, J. M. Lehn and G. Ourisson. Bull. Soc. Chim. France 1101 (1963)
- ⁹ G. R. Pettit and D. M. Piatak. J. Org. Chem. 27. 2127 (1962)

- ¹⁰ W. T. de Koch, P. R. Enslin, K. B. Norton, D. H. R. Barton, B. Sklarz and A. A. Bothner-By. Tetrahedron Letters 309 (1962)
- ¹¹ M. Nussim and Y. Mazur. Tetrahedron 24, 5337 (1968)
- ¹² G. Ponsinet. D.Sc. Thesis. University of Strasbourg. 1967; G. Ourisson. private communication
- ¹³ Y. Tanahashi, Y. Moriyama, T. Takahashi, F. Patil, J. F. Biellmann and G. Ourisson. Bull. Soc. Chim. France 1670 (1966)
- 14 Y. Moriyama. Y. Tanahashi. T. Takahashi and G. Ourisson. Ibid. 2890 (1968)
- ¹⁵ L. F. Fieser and M. Fieser. 'Reagents for Organic Synthesis'. Vol. 1. p. 567. John Wiley and Sons. New York (1968)
- ¹⁶L. Ruzicka, R. Denss and O. Jeger. Helv. Chim. Acta 29, 204 (1946)
- ¹⁷ J. W. ApSimon and J. M. Rosenfeld. Chem. Comm. 1271 (1970)
- ¹⁸ D. H. R. Barton, C. F. Garbers, D. Giacopello, R. G. Harvey, J. Lessard and D. R. Taylor, J. Chem. Soc. (C) 1050 (1969)
- ¹⁹ R. Gmelin. Planta Med. 14 (suppl.). 119 (1966)
- ²⁰ R. Tschesche, G. Biermoth and G. Snatzke, Ann. 674, 196 (1964)
- ²¹ G. P. Moss. Planta Med. 14 (suppl.). 86 (1966)
- ²² R. Y. Doskotch. M. Y. Malik and J. L. Beal. Lloydia 32, 115 (1969)
- 23 E.Ritchie, R. G. Senior and W. C. Taylor. Austral. J. Chem. 22, 2371 (1969)
- 24 R. A. Labriola and G. Ourisson, C. R. Acad. Sci., Ser C 270, 1885 (1970); Chem. Abstr. 73, 109 973 C (1970)
- ²⁵ J. M. Zander and D. C. Wigfield. Chem. Comm. 1599 (1970)